Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JAMIA Open ; 7(2): ooae032, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38660616

RESUMO

Objective: The objective was to identify information loss that could affect clinical care in laboratory data transmission between 2 health care institutions via a Health Information Exchange platform. Materials and Methods: Data transmission results of 9 laboratory tests, including LOINC codes, were compared in the following: between sending and receiving electronic health record (EHR) systems, the individual Health Level Seven International (HL7) Version 2 messages across the instrument, laboratory information system, and sending EHR. Results: Loss of information for similar tests indicated the following potential patient safety issues: (1) consistently missing specimen source; (2) lack of reporting of analytical technique or instrument platform; (3) inconsistent units and reference ranges; (4) discordant LOINC code use; and (5) increased complexity with multiple HL7 versions. Discussion and Conclusions: Using an HIE with standard messaging, SHIELD (Systemic Harmonization and Interoperability Enhancement for Laboratory Data) recommendations, and enhanced EHR functionality to support necessary data elements would yield consistent test identification and result value transmission.

2.
Public Health Rep ; 138(4): 602-609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125740

RESUMO

OBJECTIVES: Public health laboratories (PHLs) are essential components of US Public Health Service operations. The health information technology that supports PHLs is central to effective and efficient laboratory operations and overall public health response to infectious disease management. This analysis presents key information on how the Nebraska Public Health Laboratory (NPHL) information technology system evolved to meet the demands of the COVID-19 pandemic. MATERIALS AND METHODS: COVID-19 presented numerous, unforeseen information technology system challenges. The most notable challenges requiring changes to NPHL software systems and capability were improving efficiency of the laboratory operation due to high-volume testing, responding daily to demands for timely data for analysis by partner systems, interfacing with multiple testing (equipment) platforms, and supporting community-based specimen collection programs. RESULTS: Improvements to the NPHL information technology system enabled NPHL to perform >121 000 SARS-CoV-2 polymerase chain reaction tests from March 2020 through January 2022 at a sustainable rate of 2000 SARS-CoV-2 tests per day, with no increase in laboratory staffing. Electronic reporting of 62 000 rapid antigen tests eliminated paper reporting and extended testing services throughout the state. Collection of COVID-19 symptom data before specimen collection enabled NPHL to make data-driven decisions to perform pool testing and conserve testing kits when supplies were low. PRACTICE IMPLICATIONS: NPHL information technology applications proved essential for managing health care provider workload, prioritizing the use of scarce testing supplies, and managing Nebraska's overall pandemic response. The NPHL experience provides useful examples of a highly capable information technology system and suggests areas for additional attention in the PHL environment, including a focus on end users, collaboration with various partners, and investment in information technology.


Assuntos
COVID-19 , Sistemas de Informação em Laboratório Clínico , Humanos , COVID-19/epidemiologia , Laboratórios , SARS-CoV-2 , Nebraska/epidemiologia , Saúde Pública , Pandemias , Emergências
3.
J Mol Diagn ; 21(3): 408-417, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30797065

RESUMO

Incorporating genetic variant data into the electronic health record (EHR) in discrete computable fashion has vexed the informatics community for years. Genetic sequence test results are typically communicated by the molecular laboratory and stored in the EHR as textual documents. Although text documents are useful for human readability and initial use, they are not conducive for data retrieval and reuse. As a result, clinicians often struggle to find historical gene sequence results on a series of oncology patients within the EHR that might influence the care of the current patient. Second, identification of patients with specific mutation results in the EHR who are now eligible for new and/or changing therapy is not easily accomplished. Third, the molecular laboratory is challenged to monitor its sequencing processes for nonrandom process variation and other quality metrics. A novel approach to address each of these issues is presented and demonstrated. The authors use standard Health Level 7 laboratory result message formats in conjunction with international standards, Systematized Nomenclature of Medicine Clinical Terms and Human Genome Variant Society nomenclature, to represent, communicate, and store discrete gene sequence data within the EHR in a scalable fashion. This information management plan enables the support of the clinician at the point of care, enhances population management, and facilitates audits for maintaining laboratory quality.


Assuntos
Registros Eletrônicos de Saúde , Patologia Molecular/normas , Análise de Sequência de DNA/normas , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Referência , Terminologia como Assunto
4.
J Am Med Inform Assoc ; 25(3): 259-266, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024958

RESUMO

BACKGROUND: The College of American Pathologists (CAP) introduced the first cancer synoptic reporting protocols in 1998. However, the objective of a fully computable and machine-readable cancer synoptic report remains elusive due to insufficient definitional content in Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) and Logical Observation Identifiers Names and Codes (LOINC). To address this terminology gap, investigators at the University of Nebraska Medical Center (UNMC) are developing, authoring, and testing a SNOMED CT observable ontology to represent the data elements identified by the synoptic worksheets of CAP. METHODS: Investigators along with collaborators from the US National Library of Medicine, CAP, the International Health Terminology Standards Development Organization, and the UK Health and Social Care Information Centre analyzed and assessed required data elements for colorectal cancer and invasive breast cancer synoptic reporting. SNOMED CT concept expressions were developed at UNMC in the Nebraska Lexicon© SNOMED CT namespace. LOINC codes for each SNOMED CT expression were issued by the Regenstrief Institute. SNOMED CT concepts represented observation answer value sets. RESULTS: UNMC investigators created a total of 194 SNOMED CT observable entity concept definitions to represent required data elements for CAP colorectal and breast cancer synoptic worksheets, including biomarkers. Concepts were bound to colorectal and invasive breast cancer reports in the UNMC pathology system and successfully used to populate a UNMC biobank. DISCUSSION: The absence of a robust observables ontology represents a barrier to data capture and reuse in clinical areas founded upon observational information. Terminology developed in this project establishes the model to characterize pathology data for information exchange, public health, and research analytics.

5.
J Am Med Inform Assoc ; 21(5): 885-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24833774

RESUMO

OBJECTIVE: This research investigated the use of SNOMED CT to represent diagnostic tissue morphologies and notable tissue architectures typically found within a pathologist's microscopic examination report to identify gaps in expressivity of SNOMED CT for use in anatomic pathology. METHODS: 24 breast biopsy cases were reviewed by two board certified surgical pathologists who independently described the diagnostically important tissue architectures and diagnostic morphologies observed by microscopic examination. In addition, diagnostic comments and details were extracted from the original diagnostic pathology report. 95 unique clinical statements were extracted from 13 malignant and 11 benign breast needle biopsy cases. RESULTS: 75% of the inventoried diagnostic terms and statements could be represented by valid SNOMED CT expressions. The expressions included one pre-coordinated expression and 73 post-coordinated expressions. No valid SNOMED CT expressions could be identified or developed to unambiguously assert the meaning of 21 statements (ie, 25% of inventoried clinical statements). Evaluation of the findings indicated that SNOMED CT lacked sufficient definitional expressions or the SNOMED CT concept model prohibited use of certain defined concepts needed to describe the numerous, diagnostically important tissue architectures and morphologic changes found within a surgical pathology microscopic examination. CONCLUSIONS: Because information gathered during microscopic histopathology examination provides the basis of pathology diagnoses, additional concept definitions for tissue morphometries and modifications to the SNOMED CT concept model are needed and suggested to represent detailed histopathologic findings in computable fashion for purposes of patient information exchange and research. TRIAL REGISTRATION NUMBER: UNMC Institutional Review Board ID# 342-11-EP.


Assuntos
Mama/patologia , Bases de Dados Factuais , Patologia Cirúrgica , Systematized Nomenclature of Medicine , Humanos , Semântica
6.
J Pathol Inform ; 4: 2, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23599902

RESUMO

OBJECTIVE: The ability to transfer image markup and annotation data from one scanned image of a slide to a newly acquired image of the same slide within a single vendor platform was investigated. The goal was to study the ability to use image markup and annotation data files as a mechanism to capture and retain pathologist knowledge without retaining the entire whole slide image (WSI) file. METHODS: Accepted mathematical principles were investigated as a method to overcome variations in scans of the same glass slide and to accurately associate image markup and annotation data across different WSI of the same glass slide. Trilateration was used to link fixed points within the image and slide to the placement of markups and annotations of the image in a metadata file. RESULTS: Variation in markup and annotation placement between WSI of the same glass slide was reduced from over 80 µ to less than 4 µ in the x-axis and from 17 µ to 6 µ in the y-axis (P < 0.025). CONCLUSION: This methodology allows for the creation of a highly reproducible image library of histopathology images and interpretations for educational and research use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA